image
image image image image
 

New CDIAC Data Products, Publications, and Activities

October 2014

  • imageCDIAC has published "A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system" (NDP-0920) by Adrienne J. Sutton, Christopher L. Sabine, Jeremy T. Mathis of PMEL. In an effort to track ocean change and distinguish between natural and anthropogenic drivers, sustained ocean time-series measurements are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade, such as the development and deployment of Moored Autonomous pCO2 (MAPCO2) systems, have dramatically improved our ability to characterize ocean climate, sea-air gas exchange, and biogeochemical processes around the globe. The MAPCO2 system provides high-resolution data that can measure inter-annual, seasonal, and sub-seasonal dynamics and constrain the impact of short-term biogeochemical variability on CO2 flux. Overall uncertainty of the MAPCO2 is less than 2 µatm for seawater partial pressure of CO2 (pCO2) and less than 1 µatm for air pCO2. The MAPCO2 maintains this level of uncertainty for over 400 days of autonomous operation. MAPCO2 measurements are consistent with ship-board seawater pCO2 measurements and GLOBALVIEW-CO2 boundary layer atmospheric values. CDIAC provides this open ocean MAPCO2 data set including 14 surface buoys from 2004 through 2011 and a description of the methods and data quality control involved.
  • imageThe 2014 version of the Total Carbon Column Observing Network (TCCON) data archive of dry column-averaged mixing ratios of CO2, CO, N2O, CH4, H2O, HDO and HF is now available. Data are available for Ascension Island (British Overseas Territory), Darwin (Australia), Edwards/Dryden (California, USA), Eureka (Nunavut, Canada), Garmisch (Germany), Indianapolis (Indiana, USA), Izaña (Tenerife, Spain), JPL2007 (California, USA), JPL2011 (California, USA), Karlsruhe (Germany), Lamont (Oklahoma, USA), Park Falls (Wisconsin, USA), Pasadena/Caltech (California, USA), Réunion Island (France), Saga (Japan), Sodankylä (Finland), and Wollongong (Australia). Other datasets will be uploaded shortly. The data are provided in netCDF format and include site-specific DOIs.

September 2014

  • imageThe Global Carbon Budget 2014 data (Le Quéré et. al.) are now available on CDIAC. The 2014 analysis quantifies all major components of the global carbon budget, including the uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. It shows that CO2 emissions from burning fossil fuel are projected to rise by 2.5% in 2014, 65% above 1990 levels (reference year for the Kyoto Protocol). China, the USA, the European Union (EU), and India are the largest emitters, together accounting for 58% of emissions. China's CO2 emissions grew by 4.2% in 2013, the USA's by 2.9%, and India's by 5.1%. The EU has decreased its emissions by 1.8%, although it continues to export a third of its emissions to China and other producers through imported goods and services. China's CO2 emissions per person overtook emissions in the EU for the first time in 2013 and are now larger than the USA and EU combined. CO2 emissions are caused primarily by burning fossil fuels, as well as by cement production and deforestation. Deforestation accounts for 8% of CO2 emissions.
  • imageCDIAC has published NDP-094: Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean by Takahashi and co-workers. The distributions were calculated using a data set for pCO2, alkalinity and nutrient concentrations in surface waters (depths less than 50 m), which is built upon the GLODAP, CARINA and LDEO database. Calculated pH in global open-ocean surface waters ranges from 7.9 to 8.2 in the year 2005. Lower values are located in the upwelling regions in the tropical Pacific and in the Arabian and Bering Seas; and higher values are found in the subpolar and polar waters during the spring-summer months of intense photosynthetic production. Vast areas of subtropical oceans have seasonally varying pH values ranging from 8.05 during warmer months to 8.15 during colder months.
  • imageCDIAC has published An observation-based global monthly gridded sea surface pCO2 product from 1998 through 2011 and its monthly climatology. The observation-based pCO2 fields were created using a 2-step neural network technique. First the global ocean is divided into 16 biogeochemical provinces using a self organizing map. Then the non-linear relationship between variables known to drive the surface ocean carbon system and gridded observations from the SOCATv2 dataset is reconstructed. The final product is then produced by projecting surface temperature, chlorophyll, mixed layer depth, and atmospheric CO2 onto oceanic pCO2. This results in monthly pCO2 fields at 1°x1° resolution covering the entire globe with the exception of the Arctic Ocean and few marginal seas. More details can be found in Landschützer et al. 2013 and Landschützer et al. 2014.
  • Bob Andres attended the 13th Quadrennial iCACGP Symposium and 13th IGAC Science Conference in Natal, Brazil, from 22-26 September 2014. He showed a poster entitled "New uncertainty analysis of the CDIAC estimates of fossil fuel carbon dioxide emissions".

August 2014

  • imageThe Web Accessible Visualization and Extraction System (WAVES) has been updated with Global Surface pCO2 (LDEO) Database V2013 that was published last month. Approximately 9.0 million measurements of surface water pCO2 made over the global oceans during 1957-2013 have been processed to make a uniform data file in this Version 2013. Measurements made in open oceans as well as in coastal waters are included. The data assembled include only those measured using equilibrator-CO2 analyzer systems, and have been quality-controlled based upon the stability of the system performance, the reliability of calibrations for CO2 analysis and the internal consistency of data.
     

July 2014

  • imageCDIAC has published data on regional carbon stocks, assumed NPP, and net land-use change emissions by ecosystem which was estimated using historical land-use data and a simple carbon model. The work is described by S. J. Smith and A. Rothwell in a paper, entitled, "Carbon density and anthropogenic land-use influences on net land-use change emissions" (Biogeosciences, 10, 6323-6337, doi:10.5194/bg-10-6323-2013, 2013.). The model results show a net land-use change in emissions from 1700–2000 of 250 GtC and from 1850–2000 of 210 GtC. These values are somewhat higher than many estimates in the literature, but comparable to recent estimates that use a similar land-use change data set that also includes the impact of wood harvesting on carbon stocks.
  • Bob Andres gave an invited talk at Appalachian State University, Boone, NC, on 28 Jul 2014, entitled "Some thoughts on uncertainty in fossil fuel emission estimates, flux and distributions".
  • Bob Andres and Tom Boden of CDIAC with David Higdon of Los Alamos National Laboratory published a paper entitled "A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission" (Tellus B 2014, 66, 23616, http://dx.doi.org/10.3402/tellusb.v66.23616). In the paper they report the results of three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production. The three assessments collectively give a range of uncertainty that spans from 1.0 to 13% (2 σ). Greatly simplifying the assessments give a global FFCO2 uncertainty value of 8.4% (2 σ) as a reasonable value.
  • Bob Andres was a coauthor on the paper, "Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system" (Biogeosci. 11:3547-3602. doi:10.5194/bg-11-3547-2014). The paper discusses the need for a globally integrated carbon observation and analysis system to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration.

June 2014

  • imageThe Ocean Circulation Inverse Model (OCIM) result has been made avaiable by CDIAC. The model provides a new estimate of the oceanic anthropogenic CO2 sink over the industrial era (1780 to present) from assimilation of potential temperature, salinity, radiocarbon, and CFC-11 observations. This modeling effort differs from previous data-based estimates of the oceanic sink in that dynamical constraints on ocean circulation are accounted for, and the ocean circulation is explicitly modeled, allowing the calculation of oceanic storage, air-sea fluxes, and transports in a consistent manner. The resulting uncertainty of the OCIM-estimated oceanic anthropogenic CO2 uptake, transport, and storage is significantly smaller than from purely data-based or model-based estimates.
  • imageThe new LDEO Database V2013, which includes data collected through 31 December 2013, has been published. In this update a total of about 2,270,000 pCO2 measurements made during 64 new cruise/ship files (including 170,770 new measurements made by the LDEO group) have been added to version 2012 for a total of more than 9.0 million measurements of surface water pCO2 made over the global oceans during 1957-2013. The data assembled include only those measured using equilibrator-CO2 analyzer systems, and have been quality-controlled based upon the stability of the system performance, the reliability of calibrations for CO2 analysis, and the internal consistency of data. A number of measured parameters relevant to pCO2 in seawater are also listed. The global pCO2 data set is available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.
  • The paper Global carbon budget 2013 was published in Earth Systems Science Data (vol. 6, pp. 235–263) in June. Bob Andres and Tom Boden of CDIAC are coauthors on the paper. The paper describes data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community.
  • Bob Andres attended the 16th GEIA Conference in Boulder, Colorado, from 10-11 June 2014. He showed a poster entitled "A new uncertainty analysis of the CDIAC estimates of fossil fuel carbon dioxide emissions".

May 2014

  • imageCDIAC has updated its United States Historical Climatology Network (USHCN) data files through 2013 (courtesy of NOAA/NCDC). Files contain monthly means of average, maximum, and minimum temperature, along with monthly precipitation totals, for 1218 U.S. stations.
  • Bob Andres attended the Joint TES/SBR Principal Investigator Meeting in Potomac, MD, from 6-7 May 2014. He showed a poster entitled "Temporal, spatial, and uncertainty aspects of carbon dioxide emissions from fossil fuel combustion: highlights of the last two years of TES funding". Bob also was a co-author on one other presentation at the meeting.

April 2014

  • Bob Andres is a coauthor on a paper, entitled, "Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation" (Takagi et al., Geophys. Res. Lett. 41: 2598-2605. doi:10.1029/2013GL059174.). In the paper the authors investigated differences in the five currently-available datasets of column-integrated CO2 concentrations (XCO22 flux estimates.
  • imageCDIAC has established gateway pages to and background information on atmospheric aerosols, emphasizing large data bases including satellite data and surface stations. Unlike carbon dioxide, methane, nitrous oxide and halocarbons, dust is not evenly distributed in the atmosphere. Like cloud water droplets, it tends to fall out as it travels away from its source, precluding an even distribution over the planet. Nonetheless, dust records in ice cores can provide useful information about climate, as well as about occurrences of very large volcanos which can cool the atmosphere for a few years.
     

March 2014

February 2014

  • The Recent Greenhouse Gas Concentrations page has been updated as of March 2014.
     

December 2013

November 2013